
Chapter 18 Static Equilibrium 

18.1 Introduction Static Equilibrium .......................................................................... 1	  
18.2 Lever Law .............................................................................................................. 2	  

Example 18.1 Lever Law .......................................................................................... 4	  
18.3 Generalized Lever Law ........................................................................................ 5	  
18.4 Worked Examples ................................................................................................. 7	  

Example 18.2 Suspended Rod .................................................................................. 7	  
Example 18.3 Person Standing on a Hill ............................................................... 10	  
Example 18.4 The Knee .......................................................................................... 11	  

Appendix 18A The Torques About any Two Points are Equal for a Body in Static 
Equilibrium ................................................................................................................. 16	  

 



 18-1 

Chapter 18 Static Equilibrium 
 

The proof of the correctness of a new rule can be attained by the repeated 
application of it, the frequent comparison with experience, the putting of it to the 
test under the most diverse circumstances. This process, would in the natural 
course of events, be carried out in time. The discoverer, however hastens to reach 
his goal more quickly. He compares the results that flow from his rule with all the 
experiences with which he is familiar, with all older rules, repeatedly tested in 
times gone by, and watches to see if he does not light on contradictions. In this 
procedure, the greatest credit is, as it should be, conceded to the oldest and most 
familiar experiences, the most thoroughly tested rules. Our instinctive 
experiences, those generalizations that are made involuntarily, by the irresistible 
force of the innumerable facts that press upon us, enjoy a peculiar authority; and 
this is perfectly warranted by the consideration that it is precisely the elimination 
of subjective caprice and of individual error that is the object aimed at.1 
 
                            Ernst Mach 

 
18.1 Introduction Static Equilibrium 
 
When the vector sum of the forces acting on a point-like object is zero then the object 
will continue in its state of rest, or of uniform motion in a straight line. If the object is in 
uniform motion we can always change reference frames so that the object will be at rest. 
We showed that for a collection of point-like objects the sum of the external forces may 
be regarded as acting at the center of mass. So if that sum is zero the center of mass will 
continue in its state of rest, or of uniform motion in a straight line. We introduced the 
idea of a rigid body, and again showed that in addition to the fact that the sum of the 
external forces may be regarded as acting at the center of mass, forces like the 
gravitational force that acts at every point in the body may be treated as acting at the 
center of mass. However for an extended rigid body it matters where the force is applied 
because even though the sum of the forces on the body may be zero, a non-zero sum of 
torques on the body may still produce angular acceleration. In particular for fixed axis 
rotation, the torque along the axis of rotation on the object is proportional to the angular 
acceleration. It is possible that sum of the torques may be zero on a body that is not 
constrained to rotate about a fixed axis and the body may still undergo rotation. We will 
restrict ourselves to the special case in which in an inertial reference frame both the 
center of mass of the body is at rest and the body does not undergo any rotation, a 
condition that is called static equilibrium of an extended object.   
 
 The two sufficient and necessary conditions for a rigid body to be in static 
equilibrium are: 

                                                
1 Ernst Mach, The Science of Mechanics: A Critical and Historical Account of Its 
Development, translated by Thomas J. McCormack, Sixth Edition with Revisions through 
the Ninth German Edition, Open Court Publishing, Illinois. 
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(1) The sum of the forces acting on the rigid body is zero, 
 

    

F =

F1 +

F2 + ⋅⋅⋅=


0 . (18.1.1) 

 
(2) The vector sum of the torques about any point S  in a rigid body is zero, 
 

 
    

τS =

τS ,1 +


τS ,2 + ⋅⋅⋅=


0 . (18.1.2) 

 
18.2 Lever Law 
 
Let’s consider a uniform rigid beam of mass  mb  balanced on a pivot near the center of 
mass of the beam. We place two objects 1 and 2 of masses 1m  and 2m  on the beam, at 
distances 1d  and 2d  respectively from the pivot, so that the beam is static (that is, the 
beam is not rotating. See Figure 18.1.) We shall neglect the thickness of the beam and 
take the pivot point to be the center of mass.   

 

 
 

Figure 18.1 Pivoted Lever 
  
 Let’s consider the forces acting on the beam. The earth attracts the beam 
downward. This gravitational force acts on every atom in the beam, but we can 
summarize its action by stating that the gravitational force    mb

g  is concentrated at a point 
in the beam called the center of gravity of the beam, which is identical to the center of 
mass of the uniform beam. There is also a contact force pivotF


 between the pivot and the 

beam, acting upwards on the beam at the pivot point. The objects 1 and 2 exert normal 
forces downwards on the beam, 

    

N1,b ≡


N1 , and 

    

N2,b ≡


N2 , with magnitudes 1N , and 2N , 

respectively. Note that the normal forces are not the gravitational forces acting on the 
objects, but contact forces between the beam and the objects. (In this case, they are 
mathematically the same, due to the horizontal configuration of the beam and the fact that 
all objects are in static equilibrium.) The distances 1d  and 2d  are called the moment arms 

with respect to the pivot point for the forces 1N


 and 2N


, respectively. The force diagram 

on the beam is shown in Figure 18.2. Note that the pivot force pivotF


 and the force of 

gravity    mb
g  each has a zero moment arm about the pivot point. 
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Figure 18.2 Free-body diagram on beam 
 
 
Because we assume the beam is not moving, the sum of the forces in the vertical 
direction acting on the beam is therefore zero, 
 
 

  
Fpivot − mb g − N1 − N2 = 0 . (18.2.1) 

 
The force diagrams on the objects are shown in Figure 18.3. Note the magnitude of the 
normal forces on the objects are also 1N  and 2N  since these are each part of an action-
reaction pair, 

    

N1, b = −


Nb,1 , and 

    

N2, b = −


Nb, 2 .  

 

               
(a)      (b) 

 
Figure 18.3 Free-body force diagrams for each body. 

 
The condition that the forces sum to zero is not sufficient to completely predict the 
motion of the beam. All we can deduce is that the center of mass of the system is at rest 
(or moving with a uniform velocity). In order for the beam not to rotate the sum of the 
torques about any point must be zero. In particular the sum of the torques about the pivot 
point must be zero. Because the moment arm of the gravitational force and the pivot force 
is zero, only the two normal forces produce a torque on the beam. If we choose out of the 
page as positive direction for the torque (or equivalently counterclockwise rotations are 
positive) then the condition that the sum of the torques about the pivot point is zero 
becomes 
 2 2 1 1 0d N d N− = . (18.2.2) 
 
The magnitudes of the two torques about the pivot point are equal, a condition known as 
the lever law. 
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Lever Law: A beam of length l  is balanced on a pivot point that is placed 
directly beneath the center of mass of the beam. The beam will not 
undergo rotation if the product of the normal force with the moment arm 
to the pivot is the same for each body,  
 
 1 1 2 2d N d N= . (18.2.3) 

 
Example 18.1 Lever Law 
 
Suppose a uniform beam of length 1.0 ml =  and mass B 2.0 kgm =  is balanced on a pivot 
point, placed directly beneath the center of the beam. We place body 1 with mass 
1 0.3 kgm =  a distance 1 0.4 md =  to the right of the pivot point, and a second body 2 

with 2 0.6 kgm =  a distance 2d  to the left of the pivot point, such that the beam neither 

translates nor rotates. (a) What is the force pivotF


 that the pivot exerts on the beam? (b) 
What is the distance 2d  that maintains static equilibrium? 
 
Solution: a) By Newton’s Third Law, the beam exerts equal and opposite normal forces 
of magnitude 1N  on body 1, and 2N  on body 2.  The condition for force equilibrium 
applied separately to the two bodies yields 
 
 1 1 0N m g− = , (18.2.4) 
 
 2 2 0N m g− = . (18.2.5) 
 
Thus the total force acting on the beam is zero,  
 
 

  
Fpivot − (mb + m1 + m2 )g = 0 , (18.2.6) 

and the pivot force is 
 

 
  

Fpivot = (mb + m1 + m2 )g

= (2.0 kg+ 0.3 kg+ 0.6 kg)(9.8 m⋅s−2 ) = 2.8×101 N.
 (18.2.7) 

 
b) We can compute the distance 2d  from the Lever Law, 
 

 
  
d2 =

d1 N1

N2

=
d1 m1g
m2g

=
d1 m1

m2

=
(0.4 m)(0.3 kg)

0.6 kg
= 0.2 m . (18.2.8) 
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18.3 Generalized Lever Law  
 
We can extend the Lever Law to the case in which two external forces 1F


 and 2F


 are 

acting on the pivoted beam at angles 1θ  and 2θ  with respect to the horizontal as shown in 
the Figure 18.4. Throughout this discussion the angles will be limited to the range 

1 2[0 , ]θ θ π≤ ≤ . We shall again neglect the thickness of the beam and take the pivot point 
to be the center of mass. 

 
 

Figure 18.4 Forces acting at angles to a pivoted beam. 
 
The forces 1F


 and 2F


 can be decomposed into separate vectors components respectively 

   
(

F1, ,

F1,⊥ )  and 

   
(

F2, ,


F2,⊥ ) , where 1,F 


 and 2,F 


 are the horizontal vector projections of 

the two forces with respect to the direction formed by the length of the beam, and 1,⊥F


 

and 2,⊥F


 are the perpendicular vector projections respectively to the beam (Figure 18.5), 
with  
 

   

F1 =

F1, +


F1,⊥ , (18.3.1) 

 
   

F2 =

F2, +


F2,⊥ . (18.3.2) 

 
 

 
 

Figure 18.5 Vector decomposition of forces.  
 
The horizontal components of the forces are 
 
 1, 1 1cosF F θ= , (18.3.3) 
 2, 2 2cosF F θ= − , (18.3.4) 
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where our choice of positive horizontal direction is to the right. Neither horizontal force 
component contributes to possible rotational motion of the beam. The sum of these 
horizontal forces must be zero,  
 1 1 2 2cos cos 0F Fθ θ− = . (18.3.5) 
 
The perpendicular component forces are  
 
 1, 1 1sinF F θ⊥ = , (18.3.6) 
 2, 2 2sinF F θ⊥ = , (18.3.7) 
 
where the positive vertical direction is upwards. The perpendicular components of the 
forces must also sum to zero,  
 
 

  
Fpivot − mbg + F1 sinθ1 + F2 sinθ2 = 0 . (18.3.8) 

 
Only the vertical components 1,F ⊥  and 2,F ⊥  of the external forces are involved in the 
lever law (but the horizontal components must balance, as in Equation (18.3.5), for 
equilibrium). Then the Lever Law can be extended as follows. 
 

Generalized Lever Law A beam of length l  is balanced on a pivot point 
that is placed directly beneath the center of mass of the beam. Suppose a 
force 1F


 acts on the beam a distance 1d  to the right of the pivot point. A 

second force 2F


 acts on the beam a distance 2d  to the left of the pivot 
point. The beam will remain in static equilibrium if the following two 
conditions are satisfied: 
 
1) The total force on the beam is zero,  
 
2) The product of the magnitude of the perpendicular component of 
the force with the distance to the pivot is the same for each force,  

 
 
 1 1, 2 2,d F d F⊥ ⊥= . (18.3.9) 
 
       The Generalized Lever Law can be stated in an equivalent form,  
 
 1 1 1 2 2 2sin sind F d Fθ θ= . (18.3.10) 
 
We shall now show that the generalized lever law can be reinterpreted as the statement 
that the vector sum of the torques about the pivot point S  is zero when there are just two 
forces 1F


 and 2F


 acting on our beam as shown in Figure 18.6.  
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Figure 18.6 Force and torque diagram. 
 
Let’s choose the positive  z -direction to point out of the plane of the page then torque 
pointing out of the page will have a positive z -component of torque (counterclockwise 
rotations are positive). From our definition of torque about the pivot point, the magnitude 
of torque due to force 1F


 is given by  

 
 ,1 1 1 1sinS d Fτ θ= . (18.3.11) 
 
From the right hand rule this is out of the page (in the counterclockwise direction) so the 
component of the torque is positive, hence, 
 
   

(τ S ,1)z = d1F1 sinθ1 . (18.3.12) 
 
The torque due to 2F


 about the pivot point is into the page (the clockwise direction) and 

the component of the torque is negative and given by  
 
   

(τ S , 2 )z = −d2 F2 sinθ2 . (18.3.13) 
 
The z -component of the torque is the sum of the z -components of the individual torques 
and is zero, 
   

(τ S , total )z = (τ S ,1)z + (τ S , 2 )z = d1F1 sinθ1 − d2 F2 sinθ2 = 0 , (18.3.14) 
 
which is equivalent to the Generalized Lever Law, Equation (18.3.10),  
 

1 1 1 2 2 2sin sind F d Fθ θ= . 
 
18.4 Worked Examples 
 
Example 18.2 Suspended Rod 
 
A uniform rod of length   l = 2.0 m  and mass   m = 4.0 kg  is hinged to a wall at one end 
and suspended from the wall by a cable that is attached to the other end of the rod at an 
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angle of   β = 30o  to the rod (see Figure 18.7). Assume the cable has zero mass. There is a 
contact force at the pivot on the rod. The magnitude and direction of this force is 
unknown. One of the most difficult parts of these types of problems is to introduce an 
angle for the pivot force and then solve for that angle if possible. In this problem you will 
solve for the magnitude of the tension in the cable and the direction and magnitude of the 
pivot force.  (a) What is the tension in the cable? (b) What angle does the pivot force 
make with the beam? (c) What is the magnitude of the pivot force? 
 

                 
 

Figure 18.7 Example 18.2  Figure 18.8 Force and torque diagram. 
 

Solution: a) The force diagram is shown in Figure 18.8. Take the positive î -direction to 
be to the right in the figure above, and take the positive ĵ -direction to be vertically 
upward.  The forces on the rod are: the gravitational force ˆm m g= −g j , acting at the 
center of the rod; the force that the cable exerts on the rod,     


T = T (−cosβ î + sinβ ĵ) , 

acting at the right end of the rod; and the pivot force 
    

Fpivot = F(cosα î + sinα ĵ) , acting at 

the left end of the rod.  If  0 <α < π / 2 , the pivot force is directed up and to the right in 
the figure.  If  0 >α > −π / 2 , the pivot force is directed down and to the right.  We have 
no reason, at this point, to expect that α  will be in either of the quadrants, but it must be 
in one or the other. 
 
For static equilibrium, the sum of the forces must be zero, and hence the sums of the 
components of the forces must be zero, 
 

 
  

0 = −T cosβ + F cosα
0 = −mg +T sinβ + F sinα .

  (18.4.1) 

 
With respect to the pivot point, and taking positive torques to be counterclockwise, the 
gravitational force exerts a negative torque of magnitude   m g(l / 2)  and the cable exerts a 
positive torque of magnitude   T l sinβ .  The pivot force exerts no torque about the pivot. 
Setting the sum of the torques equal to zero then gives 
 

 

  

0 = T l sinβ − mg(l / 2)

T = mg
2sinβ

.
  (18.4.2) 
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This result has many features we would expect; proportional to the weight of the rod and 
inversely proportional to the sine of the angle made by the cable with respect to the 
horizontal.  Inserting numerical values gives 
 

 
   
T = mg

2sinβ
= (4.0kg)(9.8m ⋅s−2 )

2sin30
= 39.2N.  (18.4.3) 

 
There are many ways to find the angle α .  Substituting Eq. (18.4.2) for the tension into 
both force equations in Eq. (18.4.1) yields 
 

 
  

F cosα = T cosβ = (mg / 2)cotβ
F sinα = mg −T sinβ = mg / 2.

  (18.4.4) 

 
In Eq. (18.4.4), dividing one equation by the other, we see that  tanα = tanβ , α = β . 
 
The horizontal forces on the rod must cancel.  The tension force and the pivot force act 
with the same angle (but in opposite horizontal directions) and hence must have the same 
magnitude,  
   F = T = 39.2N . (18.4.5) 
 
As an alternative, if we had not done the previous parts, we could find torques about the 
point where the cable is attached to the wall.  The cable exerts no torque about this point 
and the  y -component of the pivot force exerts no torque as well.  The moment arm of the 
 x -component of the pivot force is   l tanβ  and the moment arm of the weight is   l / 2 .  
Equating the magnitudes of these two torques gives 
 

 
  
F cosα l tanβ = mg l

2
, 

 
equivalent to the first equation in Eq. (18.4.4).  Similarly, evaluating torques about the 
right end of the rod, the cable exerts no torques and the  x -component of the pivot force 
exerts no torque.  The moment arm of the  y -component of the pivot force is  l  and the 
moment arm of the weight is   l / 2 .  Equating the magnitudes of these two torques gives 
 

 
  
F sinα l = mg l

2
, 

 
reproducing the second equation in Eq. (18.4.4). The point of this alternative solution is 
to show that choosing a different origin (or even more than one origin) in order to remove 
an unknown force from the torques equations might give a desired result more directly. 
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Example 18.3 Person Standing on a Hill 
 
A person is standing on a hill that is sloped at an angle of α  with respect to the 
horizontal (Figure 18.9). The person’s legs are separated by a distance d , with one foot 
uphill and one downhill. The center of mass of the person is at a distance h  above the 
ground, perpendicular to the hillside, midway between the person’s feet. Assume that the 
coefficient of static friction between the person’s feet and the hill is sufficiently large that 
the person will not slip. (a) What is the magnitude of the normal force on each foot? (b) 
How far must the feet be apart so that the normal force on the upper foot is just zero? 
This is the moment when the person starts to rotate and fall over. 

 
 
 
 

 
 

 
 

Figure 18.9 Person standing on hill 
 

 
 
Figure 18.10 Free-body force diagram 

for person standing on hill 
 
Solution: The force diagram on the person is shown in Figure 18.10. Note that the 
contact forces have been decomposed into components perpendicular and parallel to the 
hillside. A choice of unit vectors and positive direction for torque is also shown. 
Applying Newton’s Second Law to the two components of the net force, 
 
 1 2

ˆ : cos 0N N mg α+ − =j  (18.4.6) 

 1 2
ˆ : sin 0f f mg α+ − =i . (18.4.7) 

These two equations imply that  
 1 2 cosN N mg α+ =  (18.4.8) 
 1 2 sinf f mg α+ = . (18.4.9) 
 
Evaluating torques about the center of mass, 
 

 
  
h( f1 + f2 ) + (N2 − N1)

d
2
= 0 . (18.4.10) 
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Equation (18.4.10) can be rewritten as 
 

 
  
N1 − N2 =

2h( f1 + f2 )
d

. (18.4.11) 

 
Substitution of Equation (18.4.9) into Equation (18.4.11) yields 
 

 1 2
2 ( sin )h mgN N

d
α− = . (18.4.12) 

 
We can solve for 1N  by adding Equations (18.4.8) and (18.4.12), and then dividing by 2, 
yielding 

 1
1 ( sin ) 1

cos cos sin
2 2

h mg hN mg mg
d d

αα α α⎛ ⎞= + = +⎜ ⎟⎝ ⎠
. (18.4.13) 

 
Similarly, we can solve for 2N  by subtracting Equation (18.4.12) from Equation (18.4.8) 
and dividing by 2, yielding 

 2
1
cos sin
2

hN mg
d

α α⎛ ⎞= −⎜ ⎟⎝ ⎠
. (18.4.14) 

 
The normal force 2N  as given in Equation (18.4.14) vanishes when  
 

 1
cos sin
2

h
d

α α= , (18.4.15) 

 
which can be solved for the minimum distance between the legs, 
 
 2 (tan )d h α= . (18.4.16) 
 
It should be noted that no specific model for the frictional force was used, that is, no 
coefficient of static friction entered the problem.  The two frictional forces 1f  and 2f  
were not determined separately; only their sum entered the above calculations. 
 
Example 18.4 The Knee  
 
A man of mass 70kgm =  is about to start a race. Assume the runner’s weight is equally 
distributed on both legs. The patellar ligament in the knee is attached to the upper tibia 
and runs over the kneecap. When the knee is bent, a tensile force, T


, that the ligament 

exerts on the upper tibia, is directed at an angle of 40θ = °  with respect to the horizontal. 
The femur exerts a force F


 on the upper tibia. The angle, α , that this force makes with 

the vertical will vary and is one of the unknowns to solve for. Assume that the ligament is 
connected a distance, 3.8cmd = , directly below the contact point of the femur on the 
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tibia. The contact point between the foot and the ground is a distance 13.6 10 cms = ×  
from the vertical line passing through contact point of the femur on the tibia. The center 
of mass of the lower leg lies a distance 11.8 10 cmx = ×  from this same vertical line. 
Suppose the mass Lm of the lower leg is a 1/10 of the mass of the body (Figure 18.11). (a) 

Find the magnitude T  of the force T


 of the patellar ligament on the tibia. (b) Find the 
direction (the angle α ) of the force F


 of the femur on the tibia. (c) Find the magnitude 

F  of the force F


 of the femur on the tibia. 
 

 
 

Figure 18.11 Example 18.4 

 
 

Figure 18.12 Torque-force diagram for 
knee 

 
Solutions: a) Choose the unit vector î  to be directed horizontally to the right and ĵ  
directed vertically upwards. The first condition for static equilibrium, Eq. (18.1.1), that 
the sum of the forces is zero becomes 
 
    î :− F sinα + T cosθ = 0.  (18.4.17) 
    ĵ : N − F cosα + T sinθ − (1 / 10)mg = 0.  (18.4.18) 
 
Because the weight is evenly distributed on the two feet, the normal force on one foot is 
equal to half the weight, or 
   N = (1 / 2)mg ; (18.4.19) 
Equation (18.4.18) becomes 
 

 
   

ĵ : (1 / 2)mg − F cosα + T sinθ − (1 / 10)mg = 0
(2 / 5)mg − F cosα + T sinθ = 0.

. (18.4.20) 
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The torque-force diagram on the knee is shown in Figure 18.12. Choose the point of 
action of the ligament on the tibia as the point S  about which to compute torques. Note 
that the tensile force, T


, that the ligament exerts on the upper tibia will make no 

contribution to the torque about this point S . This may help slightly in doing the 
calculations. Choose counterclockwise as the positive direction for the torque; this is the 
positive k̂ - direction. Then the torque due to the force F


 of the femur on the tibia is 

 
 

    

τS ,1 =

rS ,1 ×

F = d ĵ× (−F sinα î − F cosα ĵ) = d F sinα k̂ . (18.4.21) 

 
The torque due to the mass of the leg is  
 
 

    

τS , 2 =

rS , 2 × (−mg / 10) ĵ = (−x î − yL ĵ) × (−mg / 10) ĵ = (1 / 10)x mg k̂ . (18.4.22) 
 
The torque due to the normal force of the ground is 
 
 

    

τS ,3 =

rS ,3 × N ĵ = (−s î − yN ĵ) × N ĵ = −s N k̂ = −(1 / 2)s mg k̂ . (18.4.23) 
 
(In Equations (18.4.22) and (18.4.23), Ly  and Ny  are the vertical displacements of the 
point where the weight of the leg and the normal force with respect to the point S ; as can 
be seen, these quantities do not enter directly into the calculations.) The condition that the 
sum of the torques about the point S  vanishes, Eq. (18.1.2),  
 
 

    

τS , total =


τS ,1 +


τS , 2 +


τS ,3 =


0 , (18.4.24) 

becomes 
     d F sinα k̂ + (1 / 10)x mg k̂ − (1 / 2)s mg k̂ =


0 . (18.4.25) 

 
The three equations in the three unknowns are summarized below: 
 

 

  

− F sinα + T cosθ = 0
(2 / 5)mg − F cosα + T sinθ = 0

d F sinα + (1 / 10)x mg − (1 / 2)s mg = 0.
 (18.4.26) 

 
The horizontal force equation, the first in (18.4.26), implies that 
 
 sin cosF Tα θ= . (18.4.27) 
 
Substituting this into the torque equation, the third equation of (18.4.26), yields 
 
   d T cosθ + (1 / 10)x mg − s(1 / 2)mg = 0 . (18.4.28) 
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Note that Equation (18.4.28) is the equation that would have been obtained if we had 
chosen the contact point between the tibia and the femur as the point about which to 
determine torques.  Had we chosen this point, we would have saved one minor algebraic 
step. We can solve this Equation (18.4.28) for the magnitude T  of the force T


 of the 

patellar ligament on the tibia, 
 

 
  
T =

s(1 / 2)mg − (1 / 10)x mg
d cosθ

. (18.4.29) 

 
Inserting numerical values into Equation (18.4.29), 
 

 

  

T = (70kg)(9.8m ⋅ s−2 )
(3.6×10−1m)(1/2) − (1/10)(1.8×10−1m)

(3.8×10−2 m)cos(40°)
= 3.8 ×103 N.

 (18.4.30) 

 
b) We can now solve for the direction α  of the force F


 of the femur on the tibia as 

follows. Rewrite the two force equations in (18.4.26) as 
 

 
  

F cosα = (2 / 5)mg + T sinθ
F sinα = T cosθ.

 (18.4.31) 

 
Dividing these equations yields 
 

 
  
F cosα
F sinα

= cotanα =
(2 / 5)mg + T sinθ

T cosθ
, (18.4.32) 

And so  
 

           

  

α = cotan−1 (2 / 5)mg + T sinθ
T cosθ

⎛
⎝⎜

⎞
⎠⎟

α = cotan−1 (2 / 5)(70kg)(9.8m ⋅ s−2 ) + (3.4 ×103 N)sin(40°)
(3.4 ×103 N)cos(40°)

⎛

⎝⎜
⎞

⎠⎟
= 47°.

 (18.4.33) 

 
c) We can now use the horizontal force equation to calculate the magnitude F  of the 
force of the femur F


 on the tibia from Equation (18.4.27), 

 

 
  
F =

(3.8 ×103 N)cos(40°)
sin(47° )

= 4.0 ×103 N . (18.4.34) 

 
Note you can find a symbolic expression for α  that did not involve the intermediate 
numerical calculation of the tension.  This is rather complicated algebraically; basically, 
the last two equations in (18.4.26) are solved for F  and T  in terms of α , θ  and the 
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other variables (Cramer’s Rule is suggested) and the results substituted into the first of 
(18.4.26).  The resulting expression is 
 

 

  

cotα =
(s / 2 − x / 10)sin(40°) + ((2d / 5)cos(40°))

(s / 2 − x / 10)cos(40°)

= tan(40°) +
2d / 5

s / 2 − x / 10

 (18.4.35) 

 
which leads to the same numerical result, 47α = ° . 
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Appendix 18A The Torques About Any Two Points are Equal for a 
Body in Static Equilibrium 

 
When the net force on a body is zero, the torques about any two points are equal. To 
show this, consider any two points A  and B . Choose a coordinate system with origin O  
and denote the constant vector from A  to B  by ,A Br

 . Suppose a force iF


 is acting at the 
point O,ir

 . The vector from the point A  to the point where the force acts is denoted by 

    
rA, i , and the vectors from the point B  to the point where the force acts is denoted by 

    
rB, i . 

 
 

Figure 18A.1 Location of body i  with respect to the points A  and B . 
 
In Figure 18A.1, the position vectors satisfy 
 
 

    
rA, i =

rA, B +
rB, i . (18.A.1) 

 
The sum of the torques about the point A  is given by  
 

 
    


τ A =

rA,i ×

Fi

i=1

i=N

∑ . (18.A.2) 

 
The sum of the torques about the point B  is given by  
 

 
    


τB = rB,i ×


Fi

i=1

i=N

∑ . (18.A.3) 

 
We can now substitute Equation (18.A.1) into Equation (18.A.2) and find that  
 

 
    


τ A = rA, i ×


Fi

i=1

i=N

∑ = (rA, B +
rB, i ) ×


Fi

i=1

i=N

∑ = rA, B ×

Fi

i=1

i=N

∑ + rB, i ×

Fi

i=1

i=N

∑ . (18.A.4) 

 
In the next-to-last term in Equation (18.A.4), the vector ,A Br

  is constant and so may be 
taken outside the summation, 
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 , ,
1 1

i N i N

A B i A B i
i i

= =

= =

× = ×∑ ∑r F r F
   . (18.A.5) 

 
We are assuming that there is no net force on the body, and so the sum of the forces on 
the body is zero,  

 
    


Fi

i=1

i=N

∑ =

0 . (18.A.6) 

 
Therefore the torque about point A , Equation (18.A.2), becomes 
 

 
    


τ A =

rB,i ×

Fi

i=1

i=N

∑ =

τB . (18.A.7) 

 
For static equilibrium problems, the result of Equation (18.A.7) tells us that it does not 
matter which point we use to determine torques.  In fact, note that the position of the 
chosen origin did not affect the result at all.  Choosing the point about which to calculate 
torques (variously called “ A ”, “ B ”, “ S ” or sometimes “O ”) so that unknown forces do 
not exert torques about that point may often greatly simplify calculations. 
 
 


